Why is CA3 more vulnerable than CA1 in experimental models of controlled cortical impact-induced brain injury?

نویسندگان

  • Haojie Mao
  • Benjamin S Elkin
  • Vinay V Genthikatti
  • Barclay Morrison
  • King H Yang
چکیده

One interesting finding of controlled cortical impact (CCI) experiments is that the CA3 region of the hippocampus, which is positioned further from the impact than the CA1 region, is reported as being more injured. The current literature has suggested a positive correlation between brain tissue stretch and neuronal cell loss. However, it is counterintuitive to assume that CA3 is stretched more during CCI injury. Recent mechanical studies of the brain have reported on a level of spatial heterogeneity not previously appreciated-the finding that CA1 was significantly stiffer than all other regions tested and that CA3 was one of the most compliant. We hypothesized that mechanical heterogeneity of anatomical structures could underlie the proposed heterogeneous mechanical response and hence the pattern of cell death. As such, we developed a three-dimensional finite element (FE) rat brain model representing detailed hippocampal structures and simulated various CCI experiments. Four groups of material properties based on recent experiments were tested. In group 1, hyperelastic material properties were assigned to various hippocampal structures, with CA3 more compliant than CA1. In group 2, linear viscoelastic material properties were assigned to hippocampal structures, with CA3 more compliant than CA1. In group 3, the hippocampus was represented by homogenous linear viscoelastic material properties. In group 4, a homogeneous nonlinear hippocampus was adopted. Simulation results demonstrated that for CCI with a 5-mm diameter, flat shape impactor, CA3 experienced increased tensile strains over a larger area and to a greater magnitude than did CA1 for group 1, which best explained why CA3 is more sensitive to CCI injury. However, for groups 2-4, the total volume with high strain (>30%) in CA3 was smaller than that in CA1. The FE rat brain model, with detailed hippocampal structures presented here, will help to engineer desired experimental neurotrauma models by virtually characterizing brain biomechanics before testing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats.

This study was designed to determine the effect of erythropoietin (Epo) on cerebral blood flow (CBF), nitric oxide (NO) concentration, and neurological outcome after traumatic brain injury. In one experiment, the hemodynamic effects of Epo were determined after controlled cortical impact injury (CCII) by measuring mean arterial pressure, intracranial pressure, CBF using laser Doppler flowmetry,...

متن کامل

Physiologic progesterone reduces mitochondrial dysfunction and hippocampal cell loss after traumatic brain injury in female rats.

Growing literature suggests important sex-based differences in outcome following traumatic brain injury (TBI) in animals and humans. Progesterone has emerged as a key hormone involved in many potential neuroprotective pathways after acute brain injury and may be responsible for some of these differences. Many studies have utilized supraphysiologic levels of post-traumatic progesterone to revers...

متن کامل

Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice.

Nitric oxide (NO) derived from the inducible isoform of NO synthase (iNOS) is an inflammatory product implicated both in secondary damage and in recovery from brain injury. To address the role of iNOS in experimental traumatic brain injury (TBI), we used 2 paradigms in 2 species. In a model of controlled cortical impact (CCI) with secondary hypoxemia, rats were treated with vehicle or with 1 of...

متن کامل

Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat

Objective(s): Some histopathological alterations take place in the ischemic regions following brain ischemia. Recent studies have demonstrated some neuroprotective roles of crocin in different models of experimental cerebral ischemia. Here, we investigated the probable neuroprotective effects of crocin on the brain infarction and histopathological changes after transient model of focal cerebral...

متن کامل

Effects of Ginkgo biloba extract on the structure of Cornu Ammonis in aged rat: A morphometric study

Objective(s):Growing evidence indicates that extract of Ginkgo biloba (EGb) attenuates hippocampal-dependent memory deficit in aged individuals; however, very little is known about the effect of EGb on the structure of hippocampus. Therefore we examined the EGb-induced morphological changes of the Cornu Ammonis (CA) region in aged rats. Materials and Methods: Sixteen aged male Wistar rats, 24 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurotrauma

دوره 30 17  شماره 

صفحات  -

تاریخ انتشار 2013